Wireshark Lab: SSL

Lames F. Krose ® keith W Ross

Computer Networking: A Top-
Version: 2.0 down Approach, 4" edition.

© 2007 J.F. Kurose, K.W. Ross. All Rights Reserved

In this lab, we’ll investigate the Secure Sockets Layer (SSL) protocol, focusing on the
SSL records sent over a TCP connection. We’ll do so by analyzing a trace of the SSL
records sent between your host and an e-commerce server. We’ll investigate the various
SSL record types as well as the fields in the SSL messages.

74! ssl_trace - Wireshark M =]1E3
File Edit Wew Go Capture Analyze Statistics Help

3o e > @ * 4« 8 R « » » F & |2E & a
Eilker: |SS| > Expression... Clear Apply

Source

Destination Protocal | Info

Client Hello
server Hellao,
Certificate

108 21.830201 216.75.104.220
111 271.853520 216.75.104.220 128,738, 38,162

112 21.876168 128.238.38.162 216.75.194.220 Client Key Exchange, Change Cipher 5|
113 21.945667 216.75.194.220 128.238.38.162 Change Cipher sSpec, Encrypted Handsh
114 21.954189 128.238.38.162 216.75.194. 220 Application Data

122 23.480352 216.75.1%4. 220 128.238.38.162 Application Data

123 23.481632 216.75.194.220 128.238.38.162 [TCP segment of a reassembled PDU]

LA82615

[TCP segment of a reassembled POU]

140 23.537671 L 75,154,220 .238.38.1a2 [TC?_segment of a reassembled FPDU]
il | |
® Frame 106 (132 hytes on wire, 132 hytes captured) =
Ethernet II, Src: Ibm_10:60:99 (00:09:6b:10:60:99), Dst: AlT-HSRP-routers_00 (00:00:0C:07:ac:00)
Internet Protocol, Src: 128.238.38.162 (128.238.38.1620), Dst: 216.75.194.220 (216.75.194.220)
® Transmission Control Protocol, Src Port: 2271 (2271), Dst Port: https (4430, seq: 1, ack: 1, Len
B Secure Socket Layer

B 55wz Record Layer: Client Hello

Length: 76

Handshake Message Type: Client Hello (1)

version: ssL 3.0 (0x0300)

Cipher spec Length: 51

session ID Length: O

challenge Length: 16
® Cipher specs (17 specs)

il | |
Co00 00 00
0010 00 76
0020 <2 dc
o030 ff fF
0040 10 00
0050 03 00
ooeld 00 03
070 12 00
0080 FENETEEENRE

Challenge data used ko authenticate server {ssl.handshake.challenge), 16 bytes | Pi3360:70M: 0

|®

Bl |

1. Capturing packets in an SSL session

The first step is to capture the packets in an SSL session. To do this, you should go to
your favorite e-commerce site and begin the process of purchasing an item (but
terminating before making the actual purpose!). After capturing the packets with
Wireshark, you should set the filter so that it displays only the Ethernet frames that
contain SSL records sent from and received by your host. (An SSL record is the same
thing as an SSL message.) You should obtain something like screenshot on the previous

page.

If you have difficulty creating a trace, you should download the zip file
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the ssl-ethereal-
trace-1 packet trace.

2. Alook at the captured trace

Your Wireshark GUI should be displaying only the Ethernet frames that have SSL
records. It is important to keep in mind that an Ethernet frame may contain one or more
SSL records. (This is very different from HTTP, for which each frame contains either one
complete HTTP message or a portion of a HTTP message.) Also, an SSL record may not
completely fit into an Ethernet frame, in which case multiple frames will be needed to
carry the record.

1. For each of the first 8 Ethernet frames, specify the source of the frame (client or
server), determine the number of SSL records that are included in the frame, and
list the SSL record types that are included in the frame. Draw a timing diagram
between client and server, with one arrow for each SSL record.

2. Each of the SSL records begins with the same three fields (with possibly different
values). One of these fields is “content type” and has length of one byte. List all
three fields and their lengths.

ClientHello Record:

3. Expand the ClientHello record. (If your trace contains multiple ClientHello
records, expand the frame that contains the first one.) What is the value of the
content type?

4. Does the ClientHello record contain a nonce (also known as a “challenge”)? If so,
what is the value of the challenge in hexadecimal notation?

5. Does the ClientHello record advertise the cyber suites it supports? If so, in the
first listed suite, what are the public-key algorithm, the symmetric-key algorithm,
and the hash algorithm?

ServerHello Record:

6. Locate the ServerHello SSL record. Does this record specify a chosen cipher
suite? What are the algorithms in the chosen cipher suite?

7. Does this record include a nonce? If so, how long is it? What is the purpose of the

client and server nonces in SSL?

Does this record include a session ID? What is the purpose of the session ID?

9. Does this record contain a certificate, or is the certificate included in a separate
record. Does the certificate fit into a single Ethernet frame?

oo

Client Key Exchange Record:

10. Locate the client key exchange record. Does this record contain a pre-master
secret? What is this secret used for? Is the secret encrypted? If so, how? How long
is the encrypted secret?

Change Cipher Spec Record (sent by client) and Encrypted Handshake Record:

11. What is the purpose of the Change Cipher Spec record? How many bytes is the
record in your trace?

12. In the encrypted handshake record, what is being encrypted? How?

13. Does the server also send a change cipher record and an encrypted handshake
record to the client? How are those records different from those sent by the client?

Application Data

14. How is the application data being encrypted? Do the records containing
application data include a MAC? Does Wireshark distinguish between the
encrypted application data and the MAC?

15. Comment on and explain anything else that you found interesting in the trace.

